Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Poprzednie seminaria KTOiS

Semestr letni      2022/2023

Semestr zimowy 2022/2023

Semestr letni      2021/2022

Semestr zimowy 2021/2022

Semestr letni      2020/2021

Semestr zimowy 2020/2021

Semestr letni      2019/2020

Semestr zimowy 2019/2020

Semestr letni      2018/2019

Semestr zimowy 2018/2019

Semestr letni      2017/2018

Semestr zimowy 2017/2018

Semestr letni      2016/2017

Semestr zimowy 2016/2017

Semestr letni      2015/2016

Semestr zimowy 2015/2016

Semestr letni      2014/2015

Semestr zimowy 2014/2015

Semestr letni      2013/2014

Semestr zimowy 2013/2014

Semestr letni      2012/2013

Semestr zimowy 2012/2013

Semestr letni      2011/2012

Semestr zimowy 2011/2012

Semestr zimowy i letni 2010/2011

Widok zawartości stron Widok zawartości stron

Widok zawartości stron Widok zawartości stron

Referaty planowane w roku akademickim 2023/2024

Widok zawartości stron Widok zawartości stron

23 listopada 2023, Michał Jureczka

Physical Design using Differentiable Learned Simulators

TALK TITLE: Physical Design using Differentiable Learned Simulators
 
ABSTRACT: Designing physical artifacts that serve a purpose—such as tools and other functional structures—is central to engineering as well as everyday human behavior. Though automating design has tremendous promise, general-purpose methods do not yet exist. Here we explore a simple, fast, and robust approach to inverse design which combines learned forward simulators based on graph neural networks with gradient-based design optimization. Our approach solves high-dimensional problems with complex physical dynamics, including designing surfaces and tools to manipulate fluid flows and optimizing the shape of an airfoil to minimize drag. This framework produces highquality designs by propagating gradients through trajectories of hundreds of steps, even when using models that were pre-trained for single-step predictions on data substantially different from the design tasks. In our fluid manipulation tasks, the resulting designs outperformed those found by sampling-based optimization techniques. In airfoil design, they matched the quality of those obtained with a specialized solver. Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization across a variety of domains.
 
The talk will be based on the paper: Kelsey R. Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Peter Battaglia, Jessica Hamrick, Tobias Pfaff, Physical Design using Differentiable Learned Simulators,
https://arxiv.org/pdf/2202.00728.pdf

<< Wstecz