Books

Nonlinear Inclusions and Hemivariational Inequalities

Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26, Springer, New York, 2013, pages: 285, ISBN: 978-1-4614-4231-8
S. Migorski, A. Ochal, M. Sofonea

read more

Navier–Stokes Equations. An Introduction with Applications.

Advances in Mechanics and Mathematics, vol. 34, Springer International Publishing, New York, 2016, pages: 390, ISBN: 978-3-319-27758-5
G. Łukaszewicz, P. Kalita

read more

Editorial work

Calculus of Variations and Partial Differential Equations

Banach Center Publications, Vol. 101, 2014, pages: 238, ISBN:978-83-86806-23-2
Editors: T. Adamowicz, A. Kalamajska, S. Migorski, and A. Ochal

read more

Advances in Variational and Hemivariational Inequalities with Applications

Series: Advances in Mechanics and Mathematics, Vol. 33, 2015, pages: 368, ISBN:978-3-319-14489-4

Editors: W. Han. S. Migorski, M. Sofonea

read more

Special Issue: Contact Mechanics

Nonlinear Analysis: Real World Applications
Volume 22, 2015

Managing Editor: S. Migorski,
Editors: M. Shillor and M. Sofonea

read more

Special Issue: Dynamics and Control of Complex and Switched Systems

Mathematical Problems in Engineering, 2015

Editors: Honglei Xu, Yi Zhang,
Jianxiong Ye, Stanisław Migorski

read more

Research papers in journals

    • Coming soon
    • A. Kulig, A quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term and frictions, Nonlinear Analysis: Real World Applications, 33 (2017), 226-236.
    • S. Dudek, P. Kalita, S. Migorski, Stationary Oberbeck-Boussinesq model of generalized Newtonian fluid governed by a system of multivalued partial differential equations, Applicable Analysis, 2017, in press, doi: 10.1080/00036811.2016.1209743.
    • J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Mathematical Analysis, 2017, in press.
    • K. Bartosz, P. Kalita, S. Migorski, A. Ochal, M. Sofonea, History dependent problems with applications to contact models for elastic beams, Applied Mathematics and Optimization 73 (2016), 71-98.
    • C. Fang, W. Han, S. Migorski, M. Sofonea, A class of hemivariational inequalities for nonstationary Navier-Stokes equations, Nonlinear Analysis: Real World Applications, 31 (2016), 257-276.
    • L. Gasinski, A. Ochal, M. Shillor, Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Analysis: Real World Applications, 27 (2016), 183-202.
    • J.F. Han, S. Migorski, A quasistatic viscoelastic frictional contact problem with multivalued normal compliance, unilateral constraint and material damage, Journal of Mathematical Analysis and Applications 443 (2016), 57–80.
    • J.F. Han, S. Migorski, H. Zeng, Analysis of a dynamic viscoelastic unilateral contact problem with normal damped response, Nonlinear Analysis: Real World Applications, 28 (2016), 229-250.
    • P. Kalita, S. Migorski, M. Sofonea, A class of subdifferential inclusions for elastic unilateral contact problems, Set-Valued and Variational Analysis 24 (2016), 355-379.
    • S. Migorski, A. Ochal, M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity, 2016, in press.
    • S. Migorski, J. Ogorzaly, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications 442 (2016), 685--702.
    • J. Ogorzaly, A dynamic contact problem with history-dependent operators, Journal of Elasticity, 124 (2016), 107-132.
    • J. Ogorzaly, Dynamic contact problem with thermal effect, Georgian Mathematical Journal, 2016, in press, doi: 10.1515/gmj-2016-0025.
    • M. Sofonea, S. Migorski, A class of history-dependent variational-hemivariational inequalities, Nonlinear Differential Equations and Applications, 2016, in press.
    • M. Barboteu, K. Bartosz, W. Han, T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact, SIAM Journal of Numerical Analysis, 53 (2015), 527-550.
    • M. Barboteu, K. Bartosz, P. Kalita, A dynamic viscoelastic contact problem with normal compliance, finite penetration and nonmonotone slip rate dependent friction, Nonlinear Analysis Series B: Real World Applications, 22 (2015), 452-472.
    • K. Bartosz, X.L. Cheng, P. Kalita, Y. Yu, C. Zheng, Rothe method for parabolic variational-hemivariational inequalities, J. Math. Anal. Appl., 423 (2015), 841-862.
    • K. Bartosz, Z. Denkowski, P. Kalita, Sensitivity of optimal solutions to control problems for system described by second order evolution inclusions, Applied Mathematics \& Optimization, 71 (2015), 379-410.
    • J. Czepiel, P. Kalita, Numerical solution of a variational–hemivariational inequality modelling simplified adhesion of an elastic body, IMA Journal of Numerical Analysis, 35 (2015), 372-393.
    • M. Coti Zelati, P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561.
    • S. Dudek, P. Kalita, S. Migorski, Stationary flow of non–Newtonian fluid with nonmonotone frictional boundary conditions, Zeitschrift für angewandte Mathematik und Physik, 66 (5) (2015), 2625-2646.
    • L. Gasinski, Z.H. Liu, S. Migorski, A. Ochal. Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, Journal of Optimization Theory and Applications 164 (2015), 514-533.
    • L. Gasinski, S. Migorski. A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Applicable Analysis, 94 (2015), 1670-1694.
    • L. Gasinski, A. Ochal, Dynamic viscoelastic problem with temperature, friction and damage, Nonlinear Analysis: Real World Applications, 21 (2015), 63-75.
    • L. Gasinski, A. Ochal, Modeling of quasistatic thermoviscoelastic frictional problem with normal compliance and damage effect, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 253-261.
    • L. Gasinski, A. Ochal, M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015), 251-275.
    • L. Gasinski, D. O'Regan, N. S. Papageorgiou, A variational approach to nonlinear logistic equations, Communications in Contemporary Mathematics, 17 (2015), 37p., doi: 10.1142/S0219199714500217.
    • L. Gasinski, N. S.Papageorgiou, Extremal, nodal and stable solutions for nonlinear elliptic equations, Advanced Nonlinear Studies, 15 (2015), 629-665.
    • L. Gasinski, N. S.Papageorgiou, Nodal and multiple solutions for nonlinear elliptic equations involving a reaction with zeros, Dynamics of PDE, 12 (2015), 13-42.
    • L. Gasinski, N. S.Papageorgiou, Positive solutions for the Neumann p-Laplacian with superdiffusive reaction, Bull. Malays. Math. Sci. Soc., 1 (2015), 21p., doi: 10.1007/s40840-015-0212-310.1007/s40840-015-0212-3.
    • L. Gasinski, N. S.Papageorgiou, Resonant equations with the Neumann p-Laplacian plus an indefinite potential, Journal of Mathematical Analysis and Applications, 422 (2015), 1146-1179.
    • J. Han, Y. Li, S. Migorski, Analysis of an adhesive contact problem for viscoelastic materials with long memory, Journal of Mathematical Analysis and Applications, 427 (2015), 646-668.
    • Y.Huang, Z.H. Liu, S. Migorski, Elliptic hemivariational inequalities with nonhomogeneous Neumann boundary conditions and their applications to static frictional contact problems, Acta Applicandae Mathematicae, 138 (2015), 153-170.
    • Y. Li, A dynamic contact problem for elastic–viscoplastic materials with normal damped response and damage, Applicable Analysis, 1 (2015), 17p., doi: 10.1080/00036811.2015.1094797.
    • X. Li, Z.H. Liu, S. Migorski, Approximate controllability for second order nonlinear evolution hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations, 100 (2015), 1-16.
    • Z.H. Liu, X.W. Li, Approximate controllability for a class of hemivariational inequalities, Nonlinear Analysis: Real World Applications, 22 (2015), 581-591.
    • Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM Journal on Control and Optimization, 53 (2015), 1920-1933.
    • Z.H. Liu, X.W. Li, D. Motreanu, Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces, SIAM Journal on Control and Optimization, 53 (2015), 3238-3244.
    • Z.H. Liu, B. Zeng, Existence and controllability for fractional evolution inclusions of Clarke’s subdifferential type, Applied Mathematics and Computation, 257 (2015), 178-189.
    • L. Lu, Z.H. Liu, Existence and controllability results for stochastic fractional evolution hemivariational inequalities, Applied Mathematics and Computation, 268 (2015), 1164-1176.
    • S. Migorski, A. Ochal, M. Sofonea, History-dependent Variational-Hemivariational inequalities in contact mechanics, Nonlinear Analysis: Real World Applications 22 (2015), 604-618.
    • M. Sofonea, W. Han, S. Migorski, Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems, European Journal of Applied Mathematics, 26 (2015), 427-452.
    • B. Barabasz, E.Gajda-Zagorska, S. Migorski, M. Paszynski, R. Schaefer, M.Smolka, A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24 (2014), 865-886.
    • X. Cheng, S. Migorski, A. Ochal, M. Sofonea, Analysis of two quasistatic history-dependent contact models, Discrete and Continuous Dynamical Systems, Series B 19 (8) (2014), 2425-2445.
    • J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Variational analysis of the Langmuir-Hinshelwood dynamic mixed-kinetic adsorption model, Nonlinear Analysis: Real World Applications 15 (2014), 205–220.
    • L. Gasinski, N. S. Papageorgiou, A pair of positive solutions for (p,q)-equations with combined nonlinearities, Communications on Pure and Applied Analysis, 13 (2014), 203-215.
    • L. Gasinski, N. S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Communications on Pure and Applied Analysis, 13 (2014), 1491-1512.
    • L. Gasinski, N. S. Papageorgiou, Nonlinear, nonhomogeneous periodic problems with no growth control on the reaction, J. Dyn. Control Syst., 1 (2014), 19p., doi 10.1007/s10883-014-9245-4.
    • L. Gasinski, N. S. Papageorgiou, Dirichlet (p,q)-equations at resonance, Discrete and Continuous Dynamical Systems, 34 (2014), 2037-2060.
    • L. Gasinski, N. S. Papageorgiou, On generalized logistic equations with a non-homogeneous differential operator, Dynamical Systems: An International Journal, 29 (2014), 190-207.
    • L. Gasinski, N. S. Papageorgiou, Positive solutions for parametric equidiffusive p-laplacian equations, Acta Mathematica Scientia, 34B (2014), 610-618.
    • L. Gasinski, N. S. Papageorgiou, Mulitplicity of solutions for Neumann problems resonant at any eigenvalue, Kyoto Journal of Mathematics, 54 (2014), 259-269.
    • W. Han, S. Migorski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis 46 (2014), 3891–3912.
    • P. Kalita, G. Lukaszewicz, Attractors for Navier-Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications 19 (2014), 75-88.
    • Y. Li, S. Migorski, JF. Han, A quasistatic frictional contact problem with damage involving viscoelastic materials with short memory, Mathematics and Mechanics of Solids, 2014, 17p., doi: 10.1177/1081286514558657.
    • Z.H. Liu, M.J. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces, Journal of Integral Equations and Applications, 26 (2014), 527-551.
    • Z.H. Liu, S. Migorski, Analysis and control of differential inclusions with anti-periodic conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144A (2014), 591–602.
    • S. Migorski, A. Ochal, M. Shillor, M. Sofonea, A model of a spring-mass-damper system with temperature-dependent friction, European Journal of Applied Mathematics 25 (2014), 45-64.
    • S. Migorski, A. Ochal, M. Sofonea, Analysis of a piezoelectric contact problem with subdifferential boundary condition, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144A (2014), 1007-1025.
    • S. Migorski, P. Szafraniec, A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity, Dedicated to the memory of Professor Zdzislaw Naniewicz, Nonlinear Analysis: Real World Applications 15 (2014), 158–171.
    • P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Mathematics and Mechanics of Solids, 2014, 14p., doi: 10.1177/1081286514527860.
    • J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Variational and numerical analysis of a mixed kinetic-diffusion surfactant model for the modified the Langmuir-Hinshelwood equation, Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, Almeria, Spain, June 24-27, 2013, vol. II, 601-614.
    • S. Migorski, A note on optimal control problem for a hemivariational inequality modeling fluid flow, Discrete and Continuous Dynamical Systems, Supplement 2013, 533-542.
    • S. Migorski, A. Ochal, M. Sofonea, Weak solvability of two quasistatic viscoelastic contact problems, Mathematics and Mechanics of Solids, 18 (2013), 745-759.
    • S. Migorski, A. Ochal, M. Sofonea, History-dependent hemivariational inequalities with applications to Contact Mechanics, Annals of the University of Bucharest. Mathematical Series, 4 (LXII) (2013), 193-212.

Chapters in monographs

    • P. Kalita, S. Migorski, M. Sofonea, A multivalued variational inequality with unilateral constraints, in: System Modeling and Optimization, Series: IFIP Advances in Information and Communication Technology, L. Bociu et al. (eds.), Springer, 2016, in press.
    • L. Gasinski, N. S. Papageorgiou, Bifurcation phenomena for parametric nonlinear elliptic hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 3-37, Springer, Heidelberg, New York, Dordrecht, London.
    • S. Migorski, A. Ochal, M. Sofonea, Evolutionary inclusions and hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 39-64, Springer, Heidelberg, New York, Dordrecht, London.
    • K. Bartosz, Numerical methods for evolution hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 111-144, Springer, Heidelberg, New York, Dordrecht, London.
    • F. Wang, W. Han, J. Huang, T. Zhang, Discontinuous Galerkin methods for an elliptic variational inequality of fourth-order, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 199-222, Springer, Heidelberg, New York, Dordrecht, London.
    • P. Kalita, G. Lukaszewicz, On large time asymptotics for two classes of contact problems, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 299-332, Springer, Heidelberg, New York, Dordrecht, London.
    • S. Migorski, A. Ochal, M. Sofonea, Two history-dependent contact problems, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 355-380, Springer, Heidelberg, New York, Dordrecht, London.
    • P. Kalita, G. Lukaszewicz, Attractors for multivalued processes with weak continuity properties, in: Continuous and Distributed Systems II Theory and Applications, Studies in Systems, Decision and Control, vol. 30 (2015), 149-166, Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London.
    • J.F. Han, S. Migorski, Continuity of the solution set to second order evolution inclusions, in: System Modeling and Optimization, Series: IFIP Advances in Information and Communication Technology, vol. 443, Ch. Potzsche et al. (Eds.), Springer, Berlin, Heidelberg, 2014, 138-147.
    • S. Migorski, A. Ochal, M. Sofonea, A class of history-dependent inclusions with applications to contact problems, in: Optimization and Control Techniques and Applications, Springer Proceedings in Mathematics & Statistics, vol. 86, Edited by Honglei Xu, Kok Lay Teo, Yi Zhang, Springer, Heidelberg, New York, Dordrecht, London, 2014, 45-74.